Herein we report the synthesis of a set of seventeen 3-sulfonamide substituted coumarin derivatives. Prepared compounds were tested in vitro for inhibition of four physiologically relevant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Several coumarin sulfonamides displayed low nanomolar KI values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Some of these compounds exerted a concentration-dependent antiproliferative action toward RT4 human bladder cancer and especially A431 human epidermoid carcinoma cell lines. In the meantime, the viability of non-tumorigenic hTERT immortalized human foreskin fibroblast cell line Bj-5ta was not significantly affected by the obtained derivatives. Interestingly, compound 10q (2-oxo-2H-benzo [h]chromene-3-sulfonamide) showed a profound and selective dose-dependent inhibition of A431 cell growth with low nanomolar IC50 values. We demonstrated that 10q possessed a concentration-dependent apoptosis induction activity associated with caspase 3/7 activation in cancer cells. As carbonic anhydrase isoforms in question were not potently inhibited by this compound, its antiproliferative effects likely involve other mechanisms, such as DNA intercalation. Compound 10q clearly represents a viable lead for further development of new-generation anticancer agents.
Keywords: Antiproliferative agents; Apoptosis induction; Cancer cells; Carbonic anhydrase; Caspase activation; Coumarins; Enzyme inhibitors; Hypoxic environment; MTT-Test; Nanomolar inhibition; Primary sulfonamides; Stopped-flow assay.
Copyright © 2021 Elsevier Masson SAS. All rights reserved.