Purpose: MRI of the lung parenchyma is still challenging due to cardiac and respiratory motion, and the low proton density and short T2*. Clinical feasible MRI methods for functional lung assessment are of great interest. It was the objective of this study to evaluate the potential of combining the ultra-short echo-time stack-of-stars approach with tiny golden angle (tyGASoS) profile ordering for self-gated free-breathing lung imaging.
Methods: Free-breathing tyGASoS data were acquired in 10 healthy volunteers (3 smoker (S), 7 non-smoker (NS)). Images in different respiratory phases were reconstructed applying an image-based self-gating technique. Resulting image quality and sharpness, and parenchyma visibility were qualitatively scored by three blinded independent reader, and the signal-to-noise ratio (SNR), proton fraction (fP) and fractional ventilation (FV) quantified.
Result: The imaging protocol was well tolerated by all volunteers. Image quality was sufficient for subsequent quantitative analysis in all cases with good to excellent inter-reader reliability. Between expiration (EX) and inspiration (IN) significant differences (p < 0.001) were observed in SNR (EX: 3.73 ± 0.89, IN: 3.14 ± 0.74) and fP (EX: 0.27 ± 0.09, IN: 0.25 ± 0.08). A significant (p < 0.05) higher fP (EX/IN: 0.22 ± 0.07/0.21 ± 0.07 (NS), 0.33 ± 0.07/0.30 ± 0.06 (S)) was observed in the smoker group. No significant FV differences resulted between S and NS.
Conclusion: The study proves the feasibility of free-breathing tyGASoS for multiphase lung imaging. Changes in fP may indicate an initial response in the smoker group and as such proves the sensitivity of the proposed technique. A major limitation in FV quantification rises from the large inter-subject variability of breathing patterns and amplitudes, requiring further consideration.
Keywords: Fractional ventilation; Lung imaging; Proton fraction; Self-gating; Stack of stars; UTE.
Copyright © 2021 Elsevier Inc. All rights reserved.