Evaluation of a Parsimonious COVID-19 Outbreak Prediction Model: Heuristic Modeling Approach Using Publicly Available Data Sets

J Med Internet Res. 2021 Jul 26;23(7):e28812. doi: 10.2196/28812.

Abstract

Background: The COVID-19 pandemic has changed public health policies and human and community behaviors through lockdowns and mandates. Governments are rapidly evolving policies to increase hospital capacity and supply personal protective equipment and other equipment to mitigate disease spread in affected regions. Current models that predict COVID-19 case counts and spread are complex by nature and offer limited explainability and generalizability. This has highlighted the need for accurate and robust outbreak prediction models that balance model parsimony and performance.

Objective: We sought to leverage readily accessible data sets extracted from multiple states to train and evaluate a parsimonious predictive model capable of identifying county-level risk of COVID-19 outbreaks on a day-to-day basis.

Methods: Our modeling approach leveraged the following data inputs: COVID-19 case counts per county per day and county populations. We developed an outbreak gold standard across California, Indiana, and Iowa. The model utilized a per capita running 7-day sum of the case counts per county per day and the mean cumulative case count to develop baseline values. The model was trained with data recorded between March 1 and August 31, 2020, and tested on data recorded between September 1 and October 31, 2020.

Results: The model reported sensitivities of 81%, 92%, and 90% for California, Indiana, and Iowa, respectively. The precision in each state was above 85% while specificity and accuracy scores were generally >95%.

Conclusions: Our parsimonious model provides a generalizable and simple alternative approach to outbreak prediction. This methodology can be applied to diverse regions to help state officials and hospitals with resource allocation and to guide risk management, community education, and mitigation strategies.

Keywords: COVID-19; coronavirus; emerging outbreak; modeling disease outbreak; precision public health; predictive modeling.

MeSH terms

  • COVID-19 / epidemiology*
  • COVID-19 / prevention & control
  • California / epidemiology
  • Computer Simulation*
  • Datasets as Topic*
  • Disease Outbreaks / statistics & numerical data*
  • Forecasting / methods*
  • Heuristics*
  • Humans
  • Indiana / epidemiology
  • Iowa / epidemiology
  • Models, Biological
  • Public Sector*
  • SARS-CoV-2