Bacteria-driven drug-delivery systems have drawn considerable interests for their highly selective hypoxia-targeting and efficacy in tumor inhibition. For the first time, a supramolecular biohybrid bacterium (SA@HU) is constructed by coating attenuated Salmonella typhimurium (S. typhimurium ΔppGpp/Lux) with nanoassemblies. In addition, the host-guest inclusion complexes based on hydroxypropyl-β-cyclodextrin (HPCD) and amantadine (AMA) was developed to encapsulate the natural antineoplastic product, ursolic acid (UA). It is found that the drug-carried coating layer has no significant impact on the antitumor activity or tumor-targeting capacity of bacteria. Significant restraint of tumor progression is achieved by SA@HU due to the synergy of cellular immune activation and apoptosis enhancement. Most importantly, intravenous delivery of UA by this biohybrid vector can cause tumor lysis, as the bacteria-attracting nutrients beneficial for preferential accumulation of bacteria in tumor. The mutual promotion of bacteria and UA may also contribute to a superior anticancer effect. Hence, the SA@HU-based biotic/abiotic supramolecular therapeutic system represents a novel strategy for combined chemo-bacterial therapy.
Keywords: Bioluminescence; Chemo-biotherapy; Colon cancer; Hypoxia targeting; Salmonella typhimurium; Supramolecular complex.
Copyright © 2021 Elsevier B.V. All rights reserved.