The present study reports a novel voltammetric biosensor for cyanide based on its inhibitory effect on cytochrome c nitrite reductase (ccNiR). Interestingly, the earlier development of a point-of-care test for nitrite based on the direct electrochemistry of ccNiR has shown that the cyanide inhibition depends on the type of carbon material employed as transducer (Monteiro et al., 2019). In this work, commercial graphite pencil leads were employed in the construction of both working and pseudo-reference electrodes, with ccNiR being simply drop casted onto the former. In this way, we produced a functional and fully integrated voltammetric biosensor for nitrite quantification that also allows to observe a decrease in the catalytic current due to cyanide addition. Under turnover conditions, the biosensor showed a linear response with the logarithm of cyanide concentration in the 5-76 μM (cyclic voltammetry) and 1-40 μM (square-wave voltammetry) ranges, with a sensitivity of 20-25% ln [cyanide μM]-1 and a detection limit of 0.86-4.4 μM. The application of the pencil lead as a putative pseudo-reference was very promising, since the potentials profile matched those observed with a true reference electrode (Ag/AgCl). Overall, the direct electron transfer between ccNiR and a pencil lead electrode was demonstrated for the first time, with cyanide-induced inhibition being easily monitored, paving the way for the employment of these low-cost bioelectrodes as cyanide probes for on-site surveillance of aquatic environments.
Keywords: Cytochrome c nitrite reductase; Electrochemical cyanide biosensor; Graphite pencil lead electrode; Inhibitor.
Copyright © 2021 Elsevier B.V. All rights reserved.