Background: Preeclampsia is a systemic, multi-organ endotheliopathy, associated with oxidative injury to the blood-brain barrier (BBB). Preeclampsia initiates a cascade of events that include neuroinflammation. Recently, it was documented that Wnt/β-catenin signaling pathway exerts neuroprotective effects and maintain BBB integrity. We investigate the protective effect of omega-3 against neurovascular complication of preeclampsia and its relation to Wnt/β-catenin signaling pathway.
Methodology: After confirmation of day 0 pregnancy (G0), 24 adult pregnant female Wistar rats were divided into four groups control pregnant, pregnant supplemented with omega-3, preeclampsia (PE); female rats received N (ω)-nitro-L-arginine methyl ester (L-NAME) (50 mg/kg/day SC from day 7 to day 16 of pregnancy for induction of preeclampsia) and PE rats supplemented with omega-3. The intake of omega-3 started on day zero (0) of pregnancy until the end of the study (144 mg/kg\day orally).
Results: We found that omega-3 supplementation significantly improved cognitive functions and EEG amplitude, decreased blood pressure, water contents of brain tissues, sFlt-1, oxidative stress, proteinuria, and enhanced Wnt\β-catenin proteins. Histological examination showed improved cerebral microangiopathy, increased expression of claudin-1 and -3, CD31, and VEGF in the cerebral cortical microvasculature and choroid plexus in PE rats treated with omega-3. A positive correlation between protein expression level of Wnt \β-catenin and cognitive functions, and a negative correlation between claudin-5 relative expression, claudin-1 and -3 area % from one side and water content of the brain tissues from the other side were observed.
Conclusion: Wnt/β-catenin signaling pathway suspected to have an important role to improve BBB integrity. Neuroprotective, antioxidant, and anti-inflammatory effects of omega-3 were observed and can be suggested as protective supplementation for preeclampsia.
Keywords: ROS; Wnt/β-catenin; blood-brain barrier; preeclampsia; sVEGFR-1.
© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.