In plant-pathogen interactions, pathogens employ secreted molecules, known as effectors to overcome physical barriers, modulate plant immunity, and facilitate colonization. Among these diverse effectors, some are found to mimic the plant peptides, to target host's peptide receptors, and intervene in the peptide-regulated defense pathways and/or plant development. To better understand how pathogens have co-evolved with their plant hosts in order to improve disease management, we explored the presence of plant peptide mimics in microbes by bioinformatic analysis. In total, 36 novel peptide mimics belong to five plant peptide families were detected in bacterial and fungal kingdoms. Among them, phytosulfokine homologues were widely distributed in 22 phytopathogens and one bacterium, thereby constituted the largest proportion of the identified mimics. The putative functional peptide region is well conserved between plant and microbes, while the existence of a putative signal peptide varies between species. Our findings will increase understanding of plant-pathogen interactions, and provide new ideas for future studies of pathogenic mechanisms and disease management.
Keywords: homologues; mimics; pathogen effectors; plant peptides.
© 2021 Japanese Society for Plant Biotechnology.