This study aimed to explore the molecular mechanism of myocardial protection. The effects of miR-32-3p and ring finger protein 13 (RNF13) on endoplasmic reticulum (ER) stress-induced apoptosis of A-10 cells and human umbilical vein endothelial cells (HUVEC) were detected using flow cytometry. The effects of miR-32-3p and phenylbutyric acid (PBA) on plaque instability and myocardial tissue injury in rats were investigated after establishment of arterial plaque model and embolization model and treatment with miR-32-3p-antagomir and PBA. RNF13, which was differentially expressed in myocardial infarction, was the direct target gene of miR-32-3p. MiR-32-3p inhibited RNF13 expression and targeted RNF13 to inhibit ER stress-induced cell apoptosis. Furthermore, inhibiting miR-32-3p expression induced arterial plaque instability by reducing survival, increasing pathological lesions in arterial tissue, up-regulating ER stress-related proteins, and regulating the expressions of apoptosis-related proteins in the model rats. However, PBA reversed the effects of miR-32-3p-antagomir on the model rats. MiR-32-3p regulates myocardial injury induced by micro-embolism and micro-vascular obstruction by targeting RNF13 to regulate the stability of atherosclerotic plaques.
Keywords: Atherosclerotic plaque stability; Embolism; MiR-32-3p; Myocardium; RNF13.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.