Methacrylic functionalized hybrid carbon nanomaterial for the selective adsorption and detection of progesterone in wastewater

Environ Sci Pollut Res Int. 2021 Nov;28(44):62306-62320. doi: 10.1007/s11356-021-15056-1. Epub 2021 Jun 30.

Abstract

Progesterone, an endocrine-disrupting chemical, has been frequently detected in wastewater for decades, posing a serious threat to ecological and human health. However, it is still a challenge to achieve the effective detection of progesterone in complex matrices water samples. In this study, a novel adsorbent CNT@CS/P(MAA) was prepared by grafting methacrylic polymers on the surface of modified carbon nanomaterials. Compared with other reported materials, the hybrid carbon nanomaterial could selectively identify the progesterone in the complex industrial pharmaceutical wastewater, and its adsorption performance is almost independent of the pH and environmental temperature. In addition, this nanomaterial could be reused with a good recovery rate. The prepared nanomaterials were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, nitrogen adsorption and desorption experiments, and thermogravimetric analysis. The results confirmed that the methacrylic polymers and chitosan layer were successfully grafted on the surface of carbon nanotubes. Adsorption isotherms, adsorption kinetics, and selectivity tests showed that CNT@CS/P(MAA) had a high adsorption capacity (44.45 mg·g-1), a fast adsorption rate and a satisfied selectivity for progesterone. Then, CNT@CS/P(MAA) was used as solid phase extraction sorbent and combined with HPLC to enrich progesterone from the wastewater samples. Under the optimum conditions, a good linearity was obtained with the correlation coefficient was 0.9998, and the limit of detection was 0.003 ng·mL-1. Therefore, this method could be used for the selective and effective detection of progesterone in industrial wastewater with complex substrates and provided a new method for the detection of progesterone in other environmental waters.

Keywords: Endocrine-disrupting chemical; Hybrid carbon nanomaterial; Methacrylic; Progesterone; Solid phase extraction; Wastewater.

MeSH terms

  • Adsorption
  • Humans
  • Nanotubes, Carbon*
  • Pharmaceutical Preparations*
  • Progesterone
  • Solid Phase Extraction
  • Spectroscopy, Fourier Transform Infrared
  • Wastewater
  • Water Pollutants, Chemical* / analysis

Substances

  • Nanotubes, Carbon
  • Pharmaceutical Preparations
  • Waste Water
  • Water Pollutants, Chemical
  • Progesterone