The electrochemical method of combining N2 and H2 O to produce ammonia (i.e., the electrochemical nitrogen reduction reaction [E-NRR]) continues to draw attention as it is both environmentally friendly and well suited for a progressively distributed farm economy. Despite the multitude of recent works on the E-NRR, further progress in this field faces a bottleneck. On the one hand, despite the extensive exploration and trial-and-error evaluation of E-NRR catalysts, no study has stood out to become the stage protagonist. On the other hand, the current level of ammonia production (microgram-scale) is an almost insurmountable obstacle for its qualitative and quantitative determination, hindering the discrimination between true activity and contamination. Herein i) the popular theory and mechanism of the NRR are introduced; ii) a comprehensive summary of the recent progress in the field of the E-NRR and related catalysts is provided; iii) the operational procedures of the E-NRR are addressed, including the acquisition of key metrics, the challenges faced, and the most suitable solutions; iv) the guiding principles and standardized recommendations for the E-NRR are emphasized and future research directions and prospects are provided.
Keywords: E-NRR; electrochemical nitrogen reduction reaction; nitrogen fixation; synthetic ammonia.
© 2021 Wiley-VCH GmbH.