High refractive index dielectric nanostructures represent a new frontier in nanophotonics, and the unique semiconductor characteristics of dielectric systems make it possible to enhance electric fields by exploiting this fundamental physical phenomenon. In this work, the scattered radiation spectral features and field-enhanced interactions of gallium phosphide disks with forked slits at anapole modes are investigated systematically by numerical and multipole decomposition analyses. Additional enhancement of the electric field is achieved by opening the forked slits to create high-intensity hot spots inside the disk, and nearby molecules can access these hot spots directly. The results reveal a novel approach for near-field engineering such as electric field localization, nonlinear optics, and optical detection.
Keywords: anapole modes; dielectric nanostructures; electric field enhancement; gallium phosphide.