[Contamination Characteristics of Surface Runoff in Densely Populated Areas in Downstream Yangtze River, China]

Huan Jing Ke Xue. 2021 Jul 8;42(7):3304-3315. doi: 10.13227/j.hjkx.202012144.
[Article in Chinese]

Abstract

Urban surface runoff is an important non-point pollution source, and research on contamination characteristics of runoff is urgent for improving urban aquatic environment quality. Typical cities along the downstream Yangtze River, Wuxi and Nanjing, were selected in this study, and runoff samples from various underlying surfaces were collected to investigate contamination characteristics of heavy metals and dissolved organic matter (DOM). The results indicated that the concentration of heavy metals have exceed water quality standards in underlying surfaces partly, the decreasing order of metal contaminations was Zn > Cu > Pb > Sb > Cd. Contamination characteristics of surface runoff were found to exhibit significant differences, and arterial traffic exhibited the severe contamination of both heavy metals and DOM. Spectral characteristics indicated that the structure of DOM exhibited significant differences in various underlying surfaces, and DOM humification levels in Wuxi showed the following decreasing order:roof covering > sidewalk > parking area > grassy area > arterial traffic, aromaticity indexes exhibited order as:arterial traffic > grassy area > sidewalk > roof covering > parking area. Differential absorption spectroscopy (DAS) and FT-IR analyses indicated that DOM exhibited strong combination effects with cationic metal pollutants (Cu), which mainly occur with C=C structure and carboxylic and phenolic groups; DOM presented weak combination with anion metal pollutant (Sb), indicating that Sb likely exists as a free anion in runoff. The annual total loadings of metal contaminations in the study area were as follows:Zn > Cu > Pb > Sb > Cd. The loadings of Zn were 4.83 kg·a-1 and 3.21 kg·a-1 in Wuxi and Nanjing, respectively. Annual loadings of DOM reached 0.93 g·(m2·a)-1 and 8.72 g·(m2·a)-1. The results indicated that corresponding pollution reduction measures should be implemented for different underlying surfaces to reduce contaminant concentrations; our findings may provide essential information for improving the aquatic environment quality in downstream Yangtze River.

Keywords: antimony; differential absorption spectroscopy; dissolved organic matter (DOM); heavy metals; surface runoff.

MeSH terms

  • China
  • Cities
  • Environmental Monitoring
  • Metals, Heavy* / analysis
  • Spectroscopy, Fourier Transform Infrared
  • Water Pollutants, Chemical* / analysis

Substances

  • Metals, Heavy
  • Water Pollutants, Chemical