Background: A biomechanical model of the heart can be used to incorporate multiple data sources (electrocardiography, imaging, invasive hemodynamics). The purpose of this study was to use this approach in a cohort of patients with tetralogy of Fallot after complete repair (rTOF) to assess comparative influences of residual right ventricular outflow tract obstruction (RVOTO) and pulmonary regurgitation on ventricular health.
Methods: Twenty patients with rTOF who underwent percutaneous pulmonary valve replacement (PVR) and cardiovascular magnetic resonance imaging were included in this retrospective study. Biomechanical models specific to individual patient and physiology (before and after PVR) were created and used to estimate the RV myocardial contractility. The ability of models to capture post-PVR changes of right ventricular (RV) end-diastolic volume (EDV) and effective flow in the pulmonary artery (Qeff) was also compared with expected values.
Results: RV contractility before PVR (mean 66 ± 16 kPa, mean ± standard deviation) was increased in patients with rTOF compared with normal RV (38-48 kPa) (P < 0.05). The contractility decreased significantly in all patients after PVR (P < 0.05). Patients with predominantly RVOTO demonstrated greater reduction in contractility (median decrease 35%) after PVR than those with predominant pulmonary regurgitation (median decrease 11%). The model simulated post-PVR decreased EDV for the majority and suggested an increase of Qeff-both in line with published data.
Conclusions: This study used a biomechanical model to synthesize multiple clinical inputs and give an insight into RV health. Individualized modeling allows us to predict the RV response to PVR. Initial data suggest that residual RVOTO imposes greater ventricular work than isolated pulmonary regurgitation.
Contexte :: Une modélisation biomécanique du cœur peut être utilisée pour intégrer des sources de données multiples (électrocardiographie, imagerie, hémodynamique invasive). Le but de cette étude était d’utiliser cette approche pour une cohorte de patients atteints de tétralogie de Fallot aprèsr réparation complète (TdFr) pour évaluer, au niveau du ventricule, les influences comparatives de la sténose résiduelle de la voie d’éjection du ventricule droit (SVEVD) et de la régurgitation pulmonaire.
Méthodes :: Vingt patients atteints de TdFr ayant subi un remplacement percutane de la valve pulmonaire (RVP) et une imagerie par résonance magnétique cardiovasculaire ont été inclus dans cette étude rétrospective. Des modèles biomécaniques adaptés à chaque patient et à sa physiologie (avant et après le RVP) ont été créés et utilisés pour estimer la contractilité myocardique du ventricule droit (VD). La capacité des modèles à capturer les changements post-RVP du volume télédiastolique (VTD) du VD et du débit effectif dans l’artère pulmonaire (Qeff) a également été comparée aux valeurs attendues.
Résultats :: La contractilité du VD avant le RVP (moyenne 66 ± 16 kPa, moyenne ± déviation standard)) était plus élevée chez les patients atteints de TdFr par rapport au VD normal (38–48 kPa) (P < 0,05). La contractilité a diminué de manière significative chez tous les patients après le RVP (P < 0,05). Les patients présentant une SVEVD prédominante ont montré une plus grande réduction de la contractilité (diminution médiane de 35 %) après le RVP que ceux présentant une régurgitation pulmonaire prédominante (diminution médiane de 11 %). Le modèle a simulé une diminution du VTD-VD après le RVP pour la majorité des patients et a suggéré une augmentation du Qeff, ce qui est conforme aux données publiées.
Conclusions :: Cette étude a utilisé un modèle biomécanique pour synthétiser de multiples données cliniques et donner un aperçu de l’état de santé du VD. La modélisation individualisée nous permet de prédire la réponse du VD au RVP. Les premières données suggèrent que la SVEVD résiduelle impose un travail ventriculaire plus important que la régurgitation pulmonaire isolée.
Copyright © 2021 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.