Methyltransferase-like protein 7A (METTL7A) promotes cell survival and osteogenic differentiation under metabolic stress

Cell Death Discov. 2021 Jun 30;7(1):154. doi: 10.1038/s41420-021-00555-4.

Abstract

While bone has an inherent capacity to heal itself, it is very difficult to reconstitute large bone defects. Regenerative medicine, including stem cell implantation, has been studied as a novel solution to treat these conditions. However, when the local vascularity is impaired, even the transplanted cells undergo rapid necrosis before differentiating into osteoblasts and regenerating bone. Thus, to increase the effectiveness of stem cell transplantation, it is quintessential to improve the viability of the implanted stem cells. In this study, given that the regulation of glucose may hold the key to stem cell survival and osteogenic differentiation, we investigated the molecules that can replace the effect of glucose under ischemic microenvironment of stem cell transplantation in large bone defects. By analyzing differentially expressed genes under glucose-supplemented and glucose-free conditions, we explored markers such as methyltransferase-like protein 7A (METTL7A) that are potentially related to cell survival and osteogenic differentiation. Overexpression of METTL7A gene enhanced the osteogenic differentiation and viability of human bone marrow stem cells (hBMSCs) in glucose-free conditions. When the in vivo effectiveness of METTL7A-transfected cells in bone regeneration was explored in a rat model of critical-size segmental long-bone defect, METTL7A-transfected hBMSCs showed significantly better regenerative potential than the control vector-transfected hBMSCs. DNA methylation profiles showed a large difference in methylation status of genes related to osteogenesis and cell survival between hBMSCs cultured in glucose-supplemented condition and those cultured in glucose-free condition. Interestingly, METTL7A overexpression altered the methylation status of related genes to favor osteogenic differentiation and cell survival. In conclusion, it is suggested that a novel factor METTL7A enhances osteogenic differentiation and viability of hBMSCs by regulating the methylation status of genes related to osteogenesis or survival.