miRNA Let-7a-5p targets RNA KCNQ1OT1 and Participates in Osteoblast Differentiation to Improve the Development of Osteoporosis

Biochem Genet. 2022 Feb;60(1):370-381. doi: 10.1007/s10528-021-10105-3. Epub 2021 Jul 6.

Abstract

It is known that miRNA mediates the formation of osteogenesis, but the mechanism by which miRNA let-7a-5p regulates osteogenesis in osteoporosis (OP) is not yet understood. This paper aims to probe into the regulatory mechanism of miRNA let-7a-5p in the development of OP. Fresh femoral trabecular bones of patients with osteoporotic fracture (OP group, n = 25) and non-OP osteoarthritis (Non-OP group, n = 23) who underwent hip replacement in our hospital from December 2016 to December 2019 were collected. The expression and protein levels of miRNA let-7a-5p and V-AKT murine thymoma viral oncogene homolog 3 (RNA KCNQ1OT1) were detected. C2C12 cells were purchased and osteogenic differentiation model was constructed by BMP2 induction. After miRNA let-7a-5p up-regulation or down-regulation by transfection of corresponding mimics and inhibitors, the impacts of miRNA let-7a-5p and RNA KCNQ1OT1 on osteogenic differentiation-related factors (OC, ALP, COL1A1) in C2C12 cells were analyzed. The determination of targeting correlation of miRNA let-7a-5p with RNA KCNQ1OT1 was performed by dual-luciferase reporter (DLR). In OP samples, miRNA let-7a-5p was notably declined while RNA KCNQ1OT1 were remarkably up-regulated. MiRNA let-7a-5p reduced in C2C12 cells as BMP2 treatment proceeded. MiRNA let-7a-5p up-regulation or RNA KCNQ1OT1 down-regulation increased OC, ALP, COL1A1 levels and ALP activity. RNA KCNQ1OT1 was directly targeted to miR-497-5p. RNA KCNQ1OT1 up-regulation weakened the promoting effect of miRNA let-7a-5p up-regulation on osteoblast differentiation. MiRNA let-7a-5p up-regulation can target to reduce RNA KCNQ1OT1 and promote osteoblast differentiation, thereby improving the development of osteoporosis.

Keywords: Osteogenic differentiation; Osteoporosis; RNA KCNQ1OT1; miR-497-5p.

MeSH terms

  • Animals
  • Cell Differentiation
  • Humans
  • Mice
  • MicroRNAs* / genetics
  • Osteoblasts
  • Osteogenesis / genetics
  • Osteoporosis* / genetics

Substances

  • MIRN497 microRNA, human
  • MicroRNAs