Chiral magnetic hybrid materials constructed from macromolecules and their chiral applications

Nanoscale. 2021 Jul 15;13(27):11765-11780. doi: 10.1039/d1nr01939b.

Abstract

Chirality is a fundamental and ubiquitous feature of living organisms in nature. Magnetic materials, in particular magnetic nanoparticles (MNPs), show some interesting properties such as large specific surface area, easy surface modification, magnetic responsivity and separation ability. Integrating MNPs with chirality in a single material will undoubtedly create a large number of advanced multi-functional materials. Despite the great advancements made in this area, there have been no review articles to summarize the relevant studies. The present work reviews the major progress recently made in constructing chiral magnetic hybrid materials (CMHMs) using macromolecules, which are classified based on the primary chiral macromolecular organic components, namely, biological polymers and synthetic polymers, and the applications of the resulting chiral hybrids in chiral research fields, including asymmetric catalysis, enzymatic resolution, chromatographic separation, enantioselective crystallization and enantioselective adsorption, are also summarized. The challenges and prospects of related research fields are proposed in the last section.

Publication types

  • Review