Here, we report our newly built table-top ultrafast extreme ultraviolet (EUV) photoemission electron microscope. The coherent ultrafast EUV light is served by a single order harmonic, which is generated by the interaction between the intense 800-nm femtosecond laser and noble gases in the hollow core fiber. The required order of the harmonic is selected out by a single grating in the off-plane mount and focused on the sample in the ultrahigh vacuum chamber of the photoemission electron microscope. Using metal gold and copper samples, the spatial resolution is calibrated to be better than 50 nm and the energy resolution is calibrated to be better than 300 meV. This microscope provides an advanced tool for studying electron dynamics covering the full Brillouin zone of solid materials with ultrahigh time, space, and energy resolution.