Purpose: The aim of this study was to evaluate the adhesive bond strength of fiberglass posts treated with experimental silanes based on thio-urethane and submitted to thermo and mechanical cycles.
Materials and methods: Bovine roots were divided into six groups: RX-RU2 (RelyX CP + RelyX U200); PETMP-HDDI-RU2 (PETMP-HDDI + RelyX U200); PETMP-BDI-RU2 (PETMP-BDI + RelyX U200); RX-RU (RelyX CP + RelyX Ultimate); PETMP-HDDI-RU (PETMP-HDDI + RelyX Ultimate); PETMP-BDI-RU (PETMP-BDI + RelyX Ultimate). One slice from each root third (n=10) was submitted to the push-out test and the values evaluated with R Program statistical analysis, while the failure pattern assessed in percentage.
Results: Among root thirds, RX-RU2 promoted greater strength at the cervical and apical thirds; PETMP-HDDI-RU2 showed highest values at the three thirds; and PETMP-BDI-RU2 was strongest at the apical third. RX-RU presented higher strength at the apical third, and PETMP-HDDI-RU and PETMP-BDI-RU had similar values at the three thirds. In each root third, PETMP-HDDI-RU2 showed similar strength at all thirds, and similar strength at the apical third was observed for other associations. Mixed and adhesive failures predominated.
Conclusion: Experimental silanes promoted different bond strength values in the adhesion of fiberglass posts to the root thirds, with better results for PETMP-HDDI silane. The root region did not influence the failure pattern and most slices showed mixed (MCDP) or adhesive (ADP) failure.
Keywords: Adhesive strength; Experimental silane; Failure pattern; Fiberglass post; Resin cement.
Copyright © 2021 European Oral Research.