Photo-electronic devices based on reactive oxygen species (ROS) generation suffer a crucial limitation in wound treatment due to their sandwich structure, which prevents the contact of ROS with wound tissue. In this work, the first anti-sandwich structured visible-light/electricity dual-responsive wound dressing is constructed for treatment of methicillin-resistant Staphylococcus aureus (MRSA), based on selenoviologen-appendant polythiophene (SeV2+ -PT)-containing polyacrylamide hydrogels. The new wound dressing is named an anti-sandwich structured photo-electronic wound dressing (PEWD). The unique structure of PEWD enables its use in synergistic electrodynamic and photodynamic therapy (EDT and PDT), providing rapid, on-demand, and sustained generation of ROS in situ via short-time light irradiation and/or wireless-controlled electrification. The PEWD possesses good flexibility, excellent biocompatibility, and fast response, as well as sustained ROS generation in a physiological environment. Animal experiments demonstrate effective ROS generation in 6 s under irradiation and electrification, inhibiting infection at an early stage, and substantially shortening the healing time of bacterial infection (to within 7 days). This proof-of-concept research holds great promise in developing new flexible PEWD, and novel strategies to improve wound treatment.
Keywords: conductive hydrogels; electrodynamic therapy; photo-electronic wound dressing; photodynamic therapy; wound infection.
© 2021 Wiley-VCH GmbH.