Plant circadian clock has emerged as a central hub integrating various endogenous signals and exogenous stimuli to coordinate diverse plant physiological processes. The intimate relationship between crop circadian clock and key agronomic traits has been increasingly appreciated. However, due to the lack of fundamental genetic resources, more complex genome structures and the high cost of large-scale time-course circadian expression profiling, our understanding of crop circadian clock is still very limited. To study plant circadian clock, conventional methods rely on time-course experiments, which can be expensive and time-consuming. Different from these conventional approaches, the molecular timetable method can estimate the global rhythm using single-time-point transcriptome datasets, which has shown great promises in accelerating studies of crop circadian clock. Here we describe the application of the molecular timetable method in soybean and provide key technical caveats as well as related R Markdown scripts.
Keywords: Circadian clock; Molecular timetable; Soybean; Submergence; Transcriptome.
© 2021. Springer Science+Business Media, LLC, part of Springer Nature.