The interplay of Rac1 activity, ubiquitination and GDI binding and its consequences for endothelial cell spreading

PLoS One. 2021 Jul 12;16(7):e0254386. doi: 10.1371/journal.pone.0254386. eCollection 2021.

Abstract

Signaling by the Rho GTPase Rac1 is key to the regulation of cytoskeletal dynamics, cell spreading and adhesion. It is widely accepted that the inactive form of Rac1 is bound by Rho GDI, which prevents Rac1 activation and Rac1-effector interactions. In addition, GDI-bound Rac1 is protected from proteasomal degradation, in line with data showing that Rac1 ubiquitination occurs exclusively when Rac1 is activated. We set out to investigate how Rac1 activity, GDI binding and ubiquitination are linked. We introduced single amino acid mutations in Rac1 which differentially altered Rac1 activity, and compared whether the level of Rac1 activity relates to Rac1 ubiquitination and GDI binding. Results show that Rac1 ubiquitination and the active Rac1 morphology is proportionally increased with Rac1 activity. Similarly, we introduced lysine-to-arginine mutations in constitutively active Rac1 to inhibit site-specific ubiquitination and analyze this effect on Rac1 signaling output and ubiquitination. These data show that the K16R mutation inhibits GTP binding, and consequently Rac1 activation, signaling and-ubiquitination, while the K147R mutation does not block Rac1 signaling, but does inhibits its ubiquitination. In both sets of mutants, no direct correlation was observed between GDI binding and Rac1 activity or -ubiquitination. Taken together, our data show that a strong, positive correlation exists between Rac1 activity and its level of ubiquitination, but also that GDI dissociation does not predispose Rac1 to ubiquitination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Cell Movement*
  • Cell Shape
  • HEK293 Cells
  • Human Umbilical Vein Endothelial Cells / cytology*
  • Human Umbilical Vein Endothelial Cells / metabolism*
  • Humans
  • Lysine / metabolism
  • Mutant Proteins / metabolism
  • Mutation / genetics
  • Phenotype
  • Proteasome Endopeptidase Complex / metabolism
  • Protein Binding
  • Ubiquitin / metabolism
  • Ubiquitination*
  • rac1 GTP-Binding Protein / metabolism*
  • rho-Specific Guanine Nucleotide Dissociation Inhibitors / metabolism*

Substances

  • Mutant Proteins
  • Ubiquitin
  • rho-Specific Guanine Nucleotide Dissociation Inhibitors
  • Proteasome Endopeptidase Complex
  • rac1 GTP-Binding Protein
  • Lysine

Grants and funding

FP was funded by NWO grant OCENW.klein.021. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.