Purpose: Cancer immunotherapy has markedly improved the prognosis of patients with a broad variety of malignancies. However, benefits are weighed against unique toxicities, with immune-related adverse events (irAE) that are frequent and potentially life-threatening. The diagnosis and management of these events are challenging due to heterogeneity of timing onset, multiplicity of affected organs, and lack of non-invasive monitoring techniques. We demonstrate the use of a granzyme B-targeted PET imaging agent (GZP) for irAE identification in a murine model.
Experimental design: We generated a model of immunotherapy-induced adverse events in Foxp3-DTR-GFP mice bearing MC38 tumors. GZP PET imaging was performed to evaluate organs non-invasively. We validated imaging with ex vivo analysis, correlating the establishment of these events with the presence of immune infiltrates and granzyme B upregulation in tissue. To demonstrate the clinical relevance of our findings, the presence of granzyme B was identified through immunofluorescence staining in tissue samples of patients with confirmed checkpoint inhibitor-associated adverse events.
Results: GZP PET imaging revealed differential uptake in organs affected by irAEs, such as colon, spleen, and kidney, which significantly diminished after administration of the immunosuppressor dexamethasone. The presence of granzyme B and immune infiltrates were confirmed histologically and correlated with significantly higher uptake in PET imaging. The presence of granzyme B was also confirmed in samples from patients that presented with clinical irAEs.
Conclusions: We demonstrate an interconnection between the establishment of irAEs and granzyme B presence and, for the first time, the visualization of those events through PET imaging.
©2021 American Association for Cancer Research.