Foci of high seroprevalence against Toxoplasma gondii are observed in Nunavik, the Inuit land of Northern Quebec (Canada). Considering the rare occurrence of felids in the region, exposure is suspected to be driven by water- and food-borne transmission routes. Hypotheses were that drinking untreated water from natural sources and eating country food mostly raw increased the risk of exposure to the parasite. Data from 1,300 Inuit participants of the 2017 Nunavik Health Survey were included in three weighted robust Poisson regression models. The effect of three types of exposure variables: (1) water treatment (yes/no) and if country food was mostly eaten raw (yes/no); (2) main source of drinking water (bottled/municipal/natural) and frequency of country food consumption (continuous) and (3) drinking water risk (low/intermediate/high) and frequency of a raw country food consumption (continuous), on the presence of Toxoplasma antibodies were estimated. Models were adjusted for age, sex and ecological region, with multiple sensitivity analyses being performed. Toxoplasma gondii seroprevalences were consistently correlated with age quadratically, sex (prevalence ratio = PRwoman/man ranged from 1.18 to 1.22), ecological region (PRHudsonBay/HudsonStrait ranged from 2.18 to 2.41; PRHudsonBay/UngavaBay ranged from 1.52 to 1.59) and consuming bivalve mollusc/urchin (PR varied from 1.02 to 1.21) across all three models. Each increase of two consumptions per month of beluga (PR ranged from 1.01 to 1.03), seal liver (PR ranged from 1.01 to 1.02) and goose (PR ranged from 1.01 to 1.02) were also associated with seropositivity, albeit more clearly in models 2 and 3, while drinking water mainly from natural (PR of 1.47) or municipal (PR = 1.42) sources compared to bottled water, was correlated with seroprevalence, although results were compatible with the null. Our results suggest that both the oocyst- (mollusc/urchin, drinking water) and cyst-borne (walrus, seal liver and goose) transmission pathways could be present in Nunavik.
Keywords: Toxoplasma; Canada; Inuit; epidemiology; infectious disease transmission; seroprevalence.
© 2021 Wiley-VCH GmbH.