Purpose: Sentinel lymph node biopsy (SLNB) is an invasive surgical procedure and although it has fewer complications and is less severe than axillary lymph node dissection, it is not a risk-free procedure. Large prospective trials have documented SLNB that it is considered non-therapeutic in early stage breast cancer.
Methods: Web-calculator CancerMath (CM) allows you to estimate the probability of having positive lymph nodes valued on the basis of tumour size, age, histologic type, grading, expression of estrogen receptor, progesterone receptor. We collected 595 patients referred to our Institute resulting clinically negative T1 breast cancer characterized by sentinel lymph node status, prognostic factors defined by CM and also HER2 and Ki-67. We have compared classification performances obtained by online CM application with those obtained after training its algorithm on our database.
Results: By training CM model on our dataset and using the same feature, adding HER2 or ki67 we reached a sensitivity median value of 71.4%, 73%, 70.4%, respectively, whereas the online one was equal to 61%, without losing specificity. The introduction of the prognostic factors Her2 and Ki67 could help improving performances on the classification of particularly type of patients.
Conclusions: Although the training of the model on the sample of T1 patients has brought a significant improvement in performance, the general performance does not yet allow a clinical application of the algorithm. However, the experimental results encourage future developments aimed at introducing features of a different nature in the CM model.