Chaos on compact manifolds: Differentiable synchronizations beyond the Takens theorem

Phys Rev E. 2021 Jun;103(6-1):062204. doi: 10.1103/PhysRevE.103.062204.

Abstract

This paper shows that a large class of fading memory state-space systems driven by discrete-time observations of dynamical systems defined on compact manifolds always yields continuously differentiable synchronizations. This general result provides a powerful tool for the representation, reconstruction, and forecasting of chaotic attractors. It also improves previous statements in the literature for differentiable generalized synchronizations, whose existence was so far guaranteed for a restricted family of systems and was detected using Hölder exponent-based criteria.