How stoichiometry in different ecosystem components responds to long-term nitrogen (N) addition is crucial for understanding within-ecosystem biogeochemistry cycling processes in the context of global change. To explore the effects of long-term N addition on nutrient stoichiometry in soil and plant components in forest ecosystem, a 10-year N addition experiment using ammonium nitrate (NH4NO3) was conducted in a bamboo forest in the Rainy Zone of West China, where the background N deposition is the highest in the world. Four N treatment levels (+0, +50, +150, +300 kg N ha-1 yr-1) (CK, LN, MN, HN) were applied monthly since November 2007, and then, the C:N:P stoichiometry of soil, microbial biomass, and enzymes in rhizosphere soil and bulk soil, and plant organs were measured. N addition decreased the stoichiometry of C:N:P of soil, microbial biomass, and enzymes. Soil C:N:P change under N addition treatments was stronger in bulk soil, while C:N:P changes for microbial biomass and enzyme activity were significant in rhizosphere soil. N addition significantly decreased TOC in bulk soil. Changes in MBC:MBN:MBP in rhizosphere and bulk soil were mainly caused by MBN and MBP, and MBP performance was consistent with that of AP. The main variable leading to the change of enzyme C:N:P in rhizosphere soil was BG and AP, and in bulk soil was LAP + NAG activity. Plant root C:P and N:P increased with N addition, while those for leaves and twigs did not. N addition significantly reduced the pH of both rhizosphere and bulk soils. These results suggest that the stoichiometry responses of rhizosphere and bulk soils were different due to the influence of plant roots. Soil acidification, enhanced aluminum toxicity potential, decreased root biomass and enhanced microbial P limitation caused by N addition were the important mechanisms that promoted stoichiometry changes in this ecosystem. Under the chronic input of N deposition, the stoichiometry between plant and soil evolved in different directions, which may lead to the decoupling of plants from soils.
Keywords: Bulk soil; Nitrogen addition; Plant organs; Rhizosphere soil; Stoichiometry.
Copyright © 2021 Elsevier B.V. All rights reserved.