It is known that prenatal hyperandrogenization induces alterations since early stages of life, contributing to the development of polycystic ovary syndrome affecting the reproductive axis and the metabolic status, thus promoting others associated disorders, such as dyslipidemia, insulin resistance, liver dysfunction, and even steatosis. In this study, we aimed to evaluate the effect of fetal programming by androgen excess on the hepatic lipid content and metabolic mediators at adult life. Pregnant rats were hyperandrogenized with daily subcutaneous injections of 1 mg of free testosterone from days 16 to 19 of pregnancy. The prenatally hyperandrogenized (PH) female offspring displayed two phenotypes: irregular ovulatory phenotype (PHiov) and anovulatory phenotype (PHanov), with different metabolic and endocrine features. We evaluated the liver lipid content and the main aspect of the balance between fatty acid (FA) synthesis and oxidation. We investigated the status of the peroxisomal proliferator-activated receptors (PPARs) alpha and gamma, which act as lipid mediators, and the adipokine chemerin, one marker of liver alterations. We found that prenatal hyperandrogenization altered the liver lipid profile with increased FAs levels in the PHanov phenotype and decreased cholesterol content in the PHiov phenotype. FA metabolism was also disturbed, including decreased mRNA and protein PPARgamma levels and impaired gene expression of the main enzymes involved in lipid metabolism. Moreover, we found low chemerin protein levels in both PH phenotypes. In conclusion, these data suggest that prenatal hyperandrogenization exerts a negative effect on the liver and alters lipid content and metabolic mediators' expression at adult age.
Keywords: PPARa; PPARg; chemerin; liver lipid metabolism; prenatal hyperandrogenization.