Pressure-induced Jahn-Teller switch in the homoleptic hybrid perovskite [(CH3)2NH2]Cu(HCOO)3: orbital reordering by unconventional degrees of freedom

J Mater Chem C Mater. 2021 Jun 9;9(25):8051-8056. doi: 10.1039/d1tc01966j. eCollection 2021 Jul 1.

Abstract

Through in situ, high-pressure X-ray diffraction experiments we have shown that the homoleptic perovskite-like coordination polymer [(CH3)2NH2]Cu(HCOO)3 undergoes a pressure-induced orbital reordering phase transition above 5.20 GPa. This transition is distinct from previously reported Jahn-Teller switching in coordination polymers, which required at least two different ligands that crystallize in a reverse spectrochemical series. We show that the orbital reordering phase transition in [(CH3)2NH2]Cu(HCOO)3 is instead primarily driven by unconventional octahedral tilts and shifts in the framework, and/or a reconfiguration of A-site cation ordering. These structural instabilities are unique to the coordination polymer perovskites, and may form the basis for undiscovered orbital reorientation phenomena in this broad family of materials.