This study aimed to investigate the role of lncRNA FENDRR in apoptosis of Leydig cells and the further mechanism. The apoptosis of Leydig cells (TM3 cell line) was induced by H2O2-treatment and detected by flow cytometry. The function of FENDRR was determined by in vitro and in vivo silencing experiments. The mechanism of FENDRR in regulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) was assessed by RNA immunoprecipitation, RNA pull-down, and ubiquitination assays. FENDRR expression was up-regulated in H2O2-treated TM3 cells. Knockdown of FENDRR augmented Nrf2 and HO-1 protein levels and testosterone production in H2O2-treated TM3 cells, whereas the apoptosis rate and caspase 3 activity were decreased. Mechanically, FENDRR bound to Nrf2 and promoted its ubiquitination and degradation. Nrf2 overexpression reversed the effects FENDRR overexpression on apoptosis, caspase 3 activity, and testosterone concentration in H2O2-treated TM3 cells. The in vivo experiments showed that FENDRR silence increased serum testosterone level and improved testosterone-related anti-depression behaviors of late-onset hypogonadism (LOH) mice. Our findings suggested that FENDRR could promote apoptosis of Leydig cells in LOH partly through facilitating Nrf2 degradation.
Keywords: Late-onset hypogonadism; Leydig cells; Nuclear factor erythroid 2-related factor 2; Ubiquitination; lncRNA FENDRR.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.