In this study, we aimed to investigate for the first time antimicrobial and antimutagenic activities new two Schiff bases, obtained from a primary amine (p-toluidine, o-toluidine) and an aldehyde (Helicin). Synthesized compounds characterized with elemental analysis, fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry. 1H-13C nuclear magnetic resonance spectroscopy. Antimutagenic activity was evaluated by micronuclei assay. Antimicrobial activity of Schiff bases have been demonstrated against pathogenic four Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermis, Micrococcus luteus, Bacillus cereus) and four Gram-negative bacteria (Pseudumonas aeroginosa, Salmonella typhi H, Brucella abortus, Escherichia coli) and two yeasts (Candida albicans and Saccharomyces cerevisiae). The results showed that both Schiff bases have antimutagenic activity. Especially, high concentration (20 µM) of (E)-2-(hydroxymethyl)-6-(2-((p-tolylimino)methyl)phenoxy)tetrahydro-2H-pyran-3,4,5-triol (Compound I) and (E)-2-(hydroxymethyl)-6-(2-((o-tolylimino)methyl)phenoxy)tetrahydro-2H-pyran-3,4,5-triol (Compound II) have strong antimutagenic activity against aflatoxin B1. On the other hand, both of studied compounds were found effective against pathogenic bacteria and yeasts. Compound I exhibited more activity against P. aeroginosa, S aureus, S.typhi H and C. albicans comparable to Compound II and standard antibiotics. Additionally, Compound II showed better inhibitory activity than Compound I against Candida albicans and Br. Abortus. Therefore, these compounds can be used in phytotherapeutic due to theirs antimutagenic and antimicrobial activities.