Intramyocardial injection of synthetic microRNAs (miRs) has recently been reported to be beneficial after myocardial infarction (MI). We conducted a randomized blinded study to evaluate the efficacy and reproducibility of this strategy in a mouse model of reperfused MI using rigorous methodology. Mice undergoing a 60-min coronary occlusion followed by reperfusion were randomly assigned to control miR, hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p mimic treatment. Intramyocardial injections of miRs were performed in the border zone right after reperfusion. At 8 weeks after MI, there were no significant differences in ejection fraction (EF) among groups (EF = 27.1 ± 0.4% in control group [n = 6] and 25.9 ± 0.5%, 26.0 ± 0.8%, and 26.6 ± 0.6% in hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p groups, respectively [n = 9 each]). Net change (delta) in EF at 8 weeks compared with day 3 after MI was - 4.1% in control and - 3.2%, - 2.4%, and - 0.4% in the miR-treated groups (P = NS). Assessment of cardiac function by hemodynamic studies (a method independent of echocardiography) confirmed that there was no difference in left ventricular systolic or diastolic function among groups. Consistent with the functional data, histological analysis showed no difference in scar size, cardiomyocyte area, capillary density, collagen content, or apoptosis among groups. In conclusion, this randomized, blinded study demonstrates that intramyocardial injection of a single dose of synthetic hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p mimic does not improve cardiac function or remodeling in a murine model of reperfused MI. The strategy of using synthetic miR mimics for cardiac repair after MI needs to be evaluated with rigorous preclinical studies before its potential clinical translation.
Keywords: Cardiac function; Ischemia; Myocardial infarction; Repair; Reperfusion; microRNA.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.