Background: Blueberry (Vaccinium corymbosum L.) is an important species with a high content of flavonoids in fruits. As a perennial shrub, blueberry is characterized by shallow-rooted property and susceptible to drought stress. MYB transcription factor was reported to be widely involved in plant response to abiotic stresses, however, the role of MYB family in blueberry responding to drought stress remains elusive.
Results: In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data under drought stress, including phylogenetic relationship, identification of differentially expressed genes (DEGs), expression profiling, conserved motifs, expression correlation and protein-protein interaction prediction, etc. The results showed that 229 non-redundant MYB sequences were identified in the blueberry genome, and divided into 23 subgroups. A total of 102 MYB DEGs with a significant response to drought stress were identified, of which 72 in leaves and 69 in roots, and 8 differential expression genes with a > 20-fold change in the level of expression. 17 DEGs had a higher expression correlation with other MYB members. The interaction partners of the key VcMYB proteins were predicted by STRING analysis and in combination with physiological and morphological observation. 10 key VcMYB genes such as VcMYB8, VcMYB102 and VcMYB228 were predicted to be probably involved in reactive oxygen species (ROS) pathway, and 7 key VcMYB genes (VcMYB41, VcMYB88 and VcMYB100, etc..) probably participated in leaf regulation under drought treatment.
Conclusions: Our studies provide a new understanding of the regulation mechanism of VcMYB family in blueberry response to drought stress, and lay fundamental support for future studies on blueberry grown in regions with limited water supply for this crop.
Keywords: Blueberry; Drought stress; Expression profile; Genome-wide identification; MYB transcription factor.
© 2021. The Author(s).