This work reports the hybridization of patronite (VS4) sheets with reduced graphene oxide and functionalized carbon nanotubes (RGO/FCNT/VS4) through a hydrothermal method. The synergistic effect divulged by the individual components, i.e., RGO, FCNT, and VS4, significantly improves the efficiency of the ternary (RGO/FCNT/VS4) hybrid toward the oxygen evolution reaction (OER). The ternary composite exhibits an impressive electrocatalytic OER performance in 1 M KOH and requires only 230 mV overpotential to reach the state-of-the-art current density (10 mA cm-2). Additionally, the hybrid shows an appreciable Tafel slope with a higher Faradaic efficiency (97.55 ± 2.3%) at an overpotential of 230 mV. Further, these experimental findings are corroborated by the state-of-the-art density functional theory by presenting adsorption configurations, the density of states, and the overpotential of these hybrid structures. Interestingly, the theoretical overpotential follows the qualitative trend RGO/FCNT/VS4 < FCNT/VS4 < RGO/VS4, supporting the experimental findings.
Keywords: density functional theory; metal chalcogenide; oxygen evolution reaction; water oxidation.