The effect of pyriproxyfen on the concentration of circulating metabolic fuel molecules and chemical elements in the hemolymph of Acraea horta L. (Lepidoptera: Nymphalidae): A quantitative analysis

Pestic Biochem Physiol. 2021 Aug:177:104907. doi: 10.1016/j.pestbp.2021.104907. Epub 2021 Jun 22.

Abstract

Many pollinating insects expand their niche to adjacent agricultural areas and are, therefore, exposed to chemical insecticides. Acraea horta L. (Lepidoptera: Nymphalidae) is a pollinator butterfly widely distributed in the Southern African region. The objectives of this work were to evaluate carbohydrate, lipid and chemical elements in the hemolymph of A. horta exposed to pyriproxyfen, a juvenile hormone analog (JHA). Last instar larvae (L6: day 1 or day 2) were topically exposed to an aqueous solution of pyriproxyfen (100 μg of the active ingredient per insect) or to diluent (control group). Hemolymph was collected after adult eclosion to determine total carbohydrate and lipid concentrations: in the control group lipids were present in lower concentrations than carbohydrates and there was no significant difference in metabolite levels between sexes; a similar pattern with similar levels were measured in the treated group, except that lipid concentrations in treated males were lower, and carbohydrate concentrations in treated females were lower than the control values. Morphologically intact adult males from treated larvae were subjected to free flight; their hemolymph carbohydrate levels were significantly reduced and did not recover to starting levels in a 30 min rest period following the exhaustive flight episode. To assess the effect of pyriproxyfen on a different stage of development, 48 h old butterflies were treated in the same way as described for the L6 larvae above; hemolymph samples were taken 48 h later for metabolite measurements and for quantification of chemical elements: carbohydrate levels decreased significantly after pyriproxyfen exposure, while lipid levels increased; inorganic elements measured in untreated adults were more abundant in females, with a general decrease in concentration following pyriproxyfen exposure, except for an increase in Fe levels in males and Cl levels in females. The quantitative changes measured in A. horta hemolymph via biochemical and chemical element analyses may indicate distinct physiological interferences beyond the main mode of action of pyriproxyfen on JH activity. In conclusion, the use and quantification of pyriproxyfen should be carefully evaluated prior to application in areas where A. horta and other pollinator species occur.

Keywords: Energy substrates; Hemolymph analysis; Insect growth disruptors; Juvenile hormone analog; Pollinators.

MeSH terms

  • Animals
  • Butterflies*
  • Female
  • Hemolymph
  • Juvenile Hormones
  • Larva
  • Male
  • Pyridines

Substances

  • Juvenile Hormones
  • Pyridines
  • pyriproxyfen