A potential risk assessment tool to monitor pathogens circulation in coastal waters

Environ Res. 2021 Sep:200:111748. doi: 10.1016/j.envres.2021.111748. Epub 2021 Jul 22.

Abstract

The present study reports data on a 20 months campaign monitoring enteric viruses (hepatitis A, norovirus, rotavirus, astrovirus, sapovirus, and aichivirus) and bacteria (Salmonella spp.) in seawater. The aim of this work was to assess the potential correlation among the presence of viruses/bacteria and different environmental factors like seasonality, water discharge sources (treated and untreated wastewater, mixed waters and raw water) as well as influence of the Italian lockdown measure against COVID-19 pandemic. Results showed different prevalence of the investigated viruses with values equal to 16 % for norovirus GI, 15.1 % for norovirus GII, followed by 13.8 % for astrovirus, and 13.3 % for sapovirus. Rotavirus was detected in the 8.4 % of samples and aichivirus was detected with the lowest prevalence of 3.5 %. Hepatitis A virus was never identified in the monitoring campaign. Salmonella spp. was detected with a prevalence of 36.6 %. Statistical analysis displayed a high correlation for the two noroviruses simultaneous detection (NGI and NGII) while a lower correlation was found for co-presence of noroviruses with astrovirus, sapovirus or Salmonella spp. A significant decrease of enteric pathogens in seawater was observed during the restrictions period. Results on seasonality highlighted a higher viral prevalence correlated to the wet season for all the pathogens but rotavirus and aichivirus, which instead showed an opposite trend and a higher incidence in the dry season. With respect to discharge typology, some viruses displayed a higher prevalence in treated waters (astrovirus, rotavirus, sapovirus and aichivirus) while the other investigated pathogens (noroviruses and Salmonella spp.) showed a higher prevalence in mixed waters. The main observations of this work were used to define a potential monitoring strategy that could be useful for sanitary Authorities to implement surveillance plans aimed at preventing possible sanitary outbreaks and/or environmental quality deterioration.

Keywords: Enteric viruses; Monitoring strategy; Phylogenetic analyses; Sea water monitoring; Wastewater.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Communicable Disease Control
  • Diarrhea / epidemiology
  • Feces
  • Humans
  • Pandemics*
  • Risk Assessment
  • SARS-CoV-2