Purpose: To investigate the influence of anterior chamber depth (ACD) on the accuracy of the Kane, EVO 2.0, Barrett Universal II (BU II), Olsen, SRK/T, and Haigis formulas in patients with elongated eyes.
Design: Retrospective case series study.
Methods: A total of 106 patients (106 eyes) diagnosed with high myopia (axial length ≥26 mm) were enrolled and divided into 3 subgroups according to preoperative ACD. Mean refractive error (ME), mean absolute refractive error (MAE), median absolute refractive error (MedAE), and proportions of eyes within ±0.25 D, ±0.50 D, ±0.75 D, and ±1.00 D were calculated.
Results: In all patients, the MedAE was lowest for the Kane formula (0.28 D), followed by the BU II (0.34 D). In the shallow ACD subgroup, EVO 2.0 formula produced the lowest MedAE (0.22 D), and the highest proportion of eyes within ±0.25 D (58%); the BU II (0.23 D, 50%) and Kane (0.25 D, 50%) formulas produced similar proportions. In the deep ACD group, the MedAEs of the Haigis and SRK/T formulas (0.68 D and 0.50 D, respectively) were significantly higher than those of the EVO 2.0 (0.37 D), Kane (0.30 D), BU II (0.43 D), and Olsen (0.34 D) formulas (P < 0.05).
Conclusions: Overall, the Kane and EVO 2.0 formulas had the highest accuracy. EVO 2.0 and BU II formulas are recommended for patients with shallow ACD; the Kane formula is recommended for patients with deep ACD (especially patients with extremely elongated eyes). The SRK/T and Haigis formulas should be avoided as much as possible.
Copyright © 2021 Elsevier Inc. All rights reserved.