Macrophage activation syndrome (MAS) is a life-threatening cytokine storm complicating systemic juvenile idiopathic arthritis (SJIA) driven by IFN-γ. SJIA and MAS are also associated with an unexplained emerging inflammatory lung disease (SJIA-LD), with our recent work supporting pulmonary activation of IFN-γ pathways pathologically linking SJIA-LD and MAS. Our objective was to mechanistically define the potentially novel observation of pulmonary inflammation in the TLR9 mouse model of MAS. In acute MAS, lungs exhibit mild but diffuse CD4-predominant, perivascular interstitial inflammation with elevated IFN-γ, IFN-induced chemokines, and alveolar macrophage (AMϕ) expression of IFN-γ-induced genes. Single-cell RNA sequencing confirmed IFN-driven transcriptional changes across lung cell types with myeloid expansion and detection of MAS-specific macrophage populations. Systemic MAS resolution was associated with increased AMϕ and interstitial lymphocytic infiltration. AMϕ transcriptomic analysis confirmed IFN-γ-induced proinflammatory polarization during acute MAS, which switches toward an antiinflammatory phenotype after systemic MAS resolution. Interestingly, recurrent MAS led to increased alveolar inflammation and lung injury, and it reset AMϕ polarization toward a proinflammatory state. Furthermore, in mice bearing macrophages insensitive to IFN-γ, both systemic features of MAS and pulmonary inflammation were attenuated. These findings demonstrate that experimental MAS induces IFN-γ-driven pulmonary inflammation replicating key features of SJIA-LD and provides a model system for testing potentially novel treatments directed toward SJIA-LD.
Keywords: Inflammation; Macrophages; Pulmonology; Rheumatology.