Structural and spectroscopic characterization of a new series of Ba2RE2Ge4O13 (RE = Pr, Nd, Gd, and Dy) and Ba2Gd2-xEuxGe4O13 tetragermanates

Dalton Trans. 2021 Aug 21;50(31):10935-10946. doi: 10.1039/d1dt01780b. Epub 2021 Jul 27.

Abstract

A new series of Ba2RE2Ge4O13 (RE = Pr, Nd, Gd, Dy) germanates and Ba2Gd2-xEuxGe4O13 (x = 0.1-0.8) solid solutions have been synthesized using the solid-state reaction technique and characterized by X-ray powder diffraction. All compounds crystallize in the monoclinic system, space group C2/c, Z = 4. The crystal lattice consists of RE2O12 dimers, zigzag C2-symmetric [Ge4O13]10- tetramers, and ten-coordinated Ba atoms located in voids between polyhedra. The density-functional theory (DFT) calculations performed on a rich set of Ba2RE2Ge4O13 compounds have confirmed the high thermodynamic stability of monoclinic modification. Under ultraviolet (UV) light excitation Ba2Gd2-xEuxGe4O13 phosphors exhibit an orange-red emission corresponding to the characteristic f-f transitions in Eu3+ ions. The highest intensity of lines at 580 nm (5D07F0), 582-602 nm (5D07F1), 602-640 nm (5D07F2), 648-660 nm (5D07F3), and 680-715 nm (5D07F4) is observed for the samples with x = 0.4-0.6. The possibility of their application has been assessed by studying their color characteristics, quantum efficiency, and thermal stability. The obtained data indicate that Ba2Gd2-xEuxGe4O13 solids can be considered as promising materials for UV-excited phosphor-converted light-emitting diodes (LEDs) if an aluminum nitride substrate (λex = 255 nm) is used as a semiconductor chip.