Construction of Coplanar Bicyclic Backbones for 1,2,4-Triazole-1,2,4-Oxadiazole-Derived Energetic Materials

Chemistry. 2021 Oct 1;27(55):13807-13818. doi: 10.1002/chem.202101884. Epub 2021 Aug 21.

Abstract

Combining different nitrogen-rich heterocycles into a molecule can fine-tune its energetic performance and physical properties as well as its safety for use in energetic materials. Here, 1,2,4-oxadiazole was incorporated into 1,2,4-triazole to construct new energetic backbones. 3-(5-Amino-1H-1,2,4-triazol-3-yl)-1,2,4-oxadiazol-5-amine (5) was designed and synthesized. Nitramino-functionalized N-(5-(5-amino-1,2,4-oxadiazol-3-yl)-3H-1,2,4-triazol-3-yl)nitramide (6) and N-(5-(5-(nitramino)-1,2,4-oxadiazol-3-yl)-3H-1,2,4-triazol-3-yl)nitramide (7) were also obtained, and two series of corresponding nitrogen-rich salts were prepared, leading to the creation of new energetic compounds. All derivatives were fully characterized, and five of them were further confirmed by X-ray diffraction. The theoretical calculations, energetic performance, safety, and the main decomposition gaseous products of 1,2,4-triazole-1,2,4-oxadiazole-derived energetic materials were studied. Compound 7 and its dihydroxylammonium salt (7 c) exhibited prominent detonation performance comparable to that of RDX while possessing satisfying thermal stabilities and mechanical sensitivities.

Keywords: TG-DSC-MS-FTIR; bicyclic backbone combination; clean synthesis; nitramino functionalization; triazole-oxadiazole.