Atlas-Based Quantification of DTI Measures in a Typically Developing Pediatric Spinal Cord

AJNR Am J Neuroradiol. 2021 Sep;42(9):1727-1734. doi: 10.3174/ajnr.A7221. Epub 2021 Jul 29.

Abstract

Background and purpose: Multi-parametric MRI, provides a variety of biomarkers sensitive to white matter integrity, However, spinal cord MRI data in pediatrics is rare compared to adults. The purpose of this work was 3-fold: 1) to develop a processing pipeline for atlas-based generation of the typically developing pediatric spinal cord WM tracts, 2) to derive atlas-based normative values of the DTI indices for various WM pathways, and 3) to investigate age-related changes in the obtained normative DTI indices along the extracted tracts.

Materials and methods: DTI scans of 30 typically developing subjects (age range, 6-16 years) were acquired on a 3T MR imaging scanner. The data were registered to the PAM50 template in the Spinal Cord Toolbox. Next, the DTI indices for various WM regions were extracted at a single section centered at the C3 vertebral body in all the 30 subjects. Finally, an ANOVA test was performed to examine the effects of the following: 1) laterality, 2) functionality, and 3) age, with DTI-derived indices in 34 extracted WM regions.

Results: A postprocessing pipeline was developed and validated to delineate pediatric spinal cord WM tracts. The results of ANOVA on fractional anisotropy values showed no effect for laterality (P = .72) but an effect for functionality (P < .001) when comparing the 30 primary WM labels. There was a significant (P < .05) effect of age and maturity of the left spinothalamic tract on mean diffusivity, radial diffusivity, and axial diffusivity values.

Conclusions: The proposed automated pipeline in this study incorporates unique postprocessing steps followed by template registration and quantification of DTI metrics using atlas-based regions. This method eliminates the need for manual ROI analysis of WM tracts and, therefore, increases the accuracy and speed of the measurements.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • Anisotropy
  • Child
  • Diffusion Tensor Imaging
  • Humans
  • Pediatrics*
  • Spinal Cord / diagnostic imaging
  • White Matter* / diagnostic imaging