Differential shifts in baroreflex control of renal and lumbar sympathetic nerve activity induced by freezing behaviour in rats

Exp Physiol. 2021 Oct;106(10):2060-2069. doi: 10.1113/EP089742. Epub 2021 Aug 17.

Abstract

New findings: What is the central question of this study? Is the arterial baroreflex involved in causing patterned, region-specific changes in sympathetic nerve activity during freezing behaviour in conscious rats? What is the main finding and its importance? Freezing behaviour is accompanied by differential shifts in the baroreflex control of renal and lumbar sympathetic nerve activity and heart rate. It is noteworthy that baroreflex pathways may be discretely separated, allowing differential modification of baroreflex curves that may generate differential changes in sympathetic nerve activity during freezing behaviour.

Abstract: The present study was designed to test whether the baroreflex stimulus-response curves for renal sympathetic nerve activity (RSNA), lumbar sympathetic nerve activity (LSNA) and heart rate (HR) were shifted in a regionally specific manner during freezing behaviour in conscious rats. Male Wistar rats were chronically instrumented with electrodes and arterial and venous catheters for measurement of RSNA, LSNA and electrocardiogram. After a 60-min control period, freezing behaviour in conscious rats was induced by exposure to loud white noise (90 dB) for 10 min. The baroreflex curves for RSNA, LSNA and HR were generated by changing systemic arterial pressure using rapid intravenous infusions of vasoactive drugs and then fitted to an inverse sigmoid function curve. During the freezing behaviour, the baroreflex curve for RSNA was expanded upward with a significant (P < 0.001) increase (by 153% compared with the control level) in the upper plateau (maximum capacity of RSNA drive), whereas the baroreflex curve for LSNA remained unchanged. Conversely, the baroreflex curve for HR was shifted leftward with a significant (P = 0.004) decrease (by 11 mmHg relative to the control level) in the midpoint pressure. Our results indicate that baroreflex curve shifts for RSNA, LSNA and HR occur in a regionally specific manner during freezing behaviour. This indicates that baroreflex pathways may be discretely separated, allowing differential modification of baroreflex curves that may generate differential changes in sympathetic nerve activity during freezing behaviour.

Keywords: baroreflex; freezing behaviour; sympathetic nerve activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Baroreflex* / physiology
  • Blood Pressure / physiology
  • Freezing
  • Heart Rate / physiology
  • Kidney / physiology
  • Male
  • Rats
  • Rats, Wistar
  • Sympathetic Nervous System* / physiology