Herein we present an investigation into the scope and mechanism for the synthesis of cyclopentyl and heterocyclic fused pyridones from the corresponding enyne amides. In the presence of a secondary amine, cyclization proceeds smoothly to form 5,6-bicyclic pyridones in 12-90% yield. The cyclization fails with enyne amides of six-membered and larger ring systems. The ring closure reaction is catalytic in nature with respect to the secondary amine and proceeds via sequential 1,6-addition of the amine, 6-exo-trig ring closure of the iminium intermediate, and subsequent elimination of the secondary amine. Computations show reduced conjugation between the enyne and amide for six-membered and larger systems, thereby providing an explanation for the inability of such enyne amides to form fused pyridones.