This study evaluated the effects of biocontrol Bacillus and fermenting bacteria addition on the microbial community, metabolic functions and antibiotic resistance genes (ARGs) of new prickly ash seed oil meal (PSOM)-biochar composting. The results showed that the addition of Bacillus subtilis and fermentation bacteria significantly increased the NH4+-N, bacterial abundance and fungal diversity of compost while decreasing the relative abundances (RAs) of carbon metabolism genes in mature compost. NH4+-N was significantly correlated with microbial abundance and diversity, and its increase was closely related to microbial amino acid metabolism. The addition of biocontrol and fermenting bacteria changed the RAs of ARGs, which was caused by changes in the potential hosts Proteobacteria, Bacteroidota and Firmicutes in the compost. Consequently, adding Bacillus and fermenting bacteria into PSOM to make composting was suggested as an effective method to promote nutrient transformation, regulate microbial activity and decrease RAs of tetracycline and vancomycin ARGs.
Keywords: Antibiotic resistance genes; Bacillus subtilis; Metabolic pathway; Microbial community; Prickly ash seed oil meal.
Copyright © 2021 Elsevier Ltd. All rights reserved.