Oxaliplatin is a platinum-based drug used in clinic for cancer chemotherapy. Despite of its success, the non-selective effect on normal cells causes severe side-effects and hampers its applications. Targeted delivery of oxaliplatin to cancer cells is an effective approach to enhance drug efficacy and reduce adverse effect. In this work, the Pt(IV) prodrug of oxaliplatin has been conjugated to poly(ethylene glycol) (PEG) modified nanobody in order to achieve tumor targeting as well as improved circulation in vivo. The Pt(IV) prodrug was site-specifically linked to an anti-epidermal growth factor receptor (EGFR) nanobody, so that the drug can be accumulated more pronounced in EGFR positive tumor cells than in normal cells. The effect of different length of PEG on the drug circulation has been investigated, while the fusion of anti-albumin nanobody was used for comparison. The result demonstrates that the prolonged drug circulation significantly increases the in vivo drug efficiency of the oxaliplatin-nanobody conjugate.
Keywords: Nanobody; Nanobody-drug-conjugate; Oxaliplatin; Platinum drugs; Site-specific PEGylation; Tumor targeting.
Copyright © 2021. Published by Elsevier Inc.