Background: To assess the quantification of tumor burden in multiple myeloma (MM) patients using whole-body magnetic resonance imaging (MRI) and to identify the correlation between MRI parameters and prognostic biomarkers.
Methods: We retrospectively analyzed 95 newly diagnosed MM patients treated at our hospital from June 2018 to March 2020. All patients underwent whole-body MRI examination, including diffusion-weighted whole-body imaging with background body signal suppression (DWIBS), modified Dixon chemical-shift imaging (mDIXON), and short TI inversion recovery (STIR) sequences. The MRI presentation was used to determine MM infiltration patterns and calculate apparent diffusion coefficient (ADC) and a fat fraction (FF). The one-way ANOVA and Kruskal-Wallis test were used to compare the differences of these values between DS, ISS, and R-ISS stages in different MM infiltration patterns. Spearman correlation test was used for correlation analysis of ADC and FF against prognostic biomarkers, and two independent sample t-test was used to evaluate the differences of ADC and FF in different free light-chain ratio groups.
Results: The MRI presentation was classified into normal pattern (36 patients; 37.9%), diffuse (27 patients; 28.4%), and focal (32 patients; 33.7%) infiltration patterns. Statistically significant ADC and FF differences between different DS, ISS, and R-ISS stages were observed in normal/diffuse infiltration patterns but not in focal infiltration patterns. The ADC and FF of the normal/diffuse infiltration pattern showed correlations with hemoglobin, β2-microglobulin, bone marrow plasma cells, flow cytometry of bone marrow cells, and serum monoclonal protein. In contrast, ADC in focal infiltration patterns was negatively correlated with β2-microglobulin and C-reactive protein. The FF of patients with a normal/diffuse infiltration pattern was higher in the low free light-chain ratio group than that in the high free light-chain ratio group (P=0.023).
Conclusions: Our observations indicate that quantitative whole-body functional MRI examination may serve as an effective complement to imaging diagnosis based on morphology and provide further information on the tumor burden of patients with MM.
Keywords: Multiple myeloma (MM); diffusion-weighted whole-body imaging with background body signal suppression (DWIBS); magnetic resonance imaging (MRI); modified Dixon chemical-shift imaging (mDIXON); tumor burden.
2021 Quantitative Imaging in Medicine and Surgery. All rights reserved.