Dramatic Responsivity Enhancement Through Concentrated H2 SO4 Treatment on PEDOT:PSS/TiO2 Heterojunction Fibrous Photodetectors

Small. 2021 Sep;17(37):e2101674. doi: 10.1002/smll.202101674. Epub 2021 Aug 3.

Abstract

In order to satisfy the growing requirements of wearable electronic devices, 1D fiber-shaped devices with outstanding sensitivity, flexibility, and stability are urgently needed. In this study, a novel inorganic-organic heterojunction fibrous photodetector (FPD) based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and highly ordered TiO2 nanotube array is fabricated, which endows a high responsivity, large external quantum efficiency, and fast response speed at 3 V bias. To further ameliorate its performance in the self-powered mode, a facile acid treatment is adopted and the assembled H-PEDOT:PSS/TiO2 FPD demonstrates outstanding self-powered properties with ≈3000% responsivity enhancement (161 mA W-1 at 0 V under 365 nm irradiation, photocurrent enhancement of ≈50 times) compared with the untreated device. It is found that the concentrated H2 SO4 post-treatment helps decrease the tube wall thickness of TiO2 and partially removes the insulated PSS component in PEDOT:PSS, leading to enhanced conductivity and facilitated charge transportation, and thereby superb responsivity/photocurrent enhancement of self-powered H-PEDOT:PSS/TiO2 FPD. This low-cost and high-performance self-powered FPD shows high potential for applications in wearable electronic devices.

Keywords: PEDOT:PSS/TiO 2 heterojunction; acid treatment; fiber photodetectors; responsivity enhancement; self-powered photodetectors.