This article discusses regression analysis of mixed interval-censored failure time data. Such data frequently occur across a variety of settings, including clinical trials, epidemiologic investigations, and many other biomedical studies with a follow-up component. For example, mixed failure times are commonly found in the two largest studies of long-term survivorship after childhood cancer, the datasets that motivated this work. However, most existing methods for failure time data consider only right-censored or only interval-censored failure times, not the more general case where times may be mixed. Additionally, among regression models developed for mixed interval-censored failure times, the proportional hazards formulation is generally assumed. It is well-known that the proportional hazards model may be inappropriate in certain situations, and alternatives are needed to analyze mixed failure time data in such cases. To fill this need, we develop a maximum likelihood estimation procedure for the proportional odds regression model with mixed interval-censored data. We show that the resulting estimators are consistent and asymptotically Gaussian. An extensive simulation study is performed to assess the finite-sample properties of the method, and this investigation indicates that the proposed method works well for many practical situations. We then apply our approach to examine the impact of age at cranial radiation therapy on risk of growth hormone deficiency in long-term survivors of childhood cancer.
Keywords: Maximum likelihood estimation; Proportional odds model; mixed interval-censored data.