Background: There has been a considerable focus on the changes of functional connections between brain regions in patients with type 2 diabetes mellitus (T2DM) by previous resting-state functional magnetic resonance imaging (rs-fMRI) studies. However, little is known about the function of brain information integration between the two hemispheres of the brain. This study explores differences in interhemispheric coordination between T2DM patients and normal control (NC) subjects using the voxel-mirrored homotopic connectivity (VMHC) method. We also assess whether differences in VMHC were relevant to cognitive dysfunction in T2DM patients.
Methods: Sixty-nine T2DM patients and 69 NC subjects were enrolled (matched for age, sex and education level). All participants underwent cognitive assessments. VMHC between brain regions was obtained by rs-fMRI analysis. Partial correlation analysis (after controlling for age, sex and education level) was used to explore the correlation between VMHC value and neuropsychological tests.
Results: Compared with NC subjects, T2DM patients exhibited significantly lower VMHC in the medial orbitofrontal gyrus cortex (mOFC), anterior cingulate gyrus, inferior parietal lobe, superior and middle temporal gyrus (MTG), middle occipital gyrus, and superior occipital gyrus. Moreover, after applying Bonferroni correction, the Montreal Cognitive Assessment (MoCA) score and VMHC value for the MTG were significantly positively correlated in T2DM patients. In contrast, T2DM patients exhibited higher VMHC in the cerebellum posterior lobe and tonsil and inferior temporal gyrus than the NCs.
Conclusions: Our study indicates that functional coordination between homotopic brain regions is generally impaired in T2DM patients. In brain regions with decreased VMHC in the default mode network (DMN), MTG impairment could serve as a critical node for T2DM-related cognitive dysfunction. Furthermore, the increased VMHC observed in the cerebellum and inferior temporal gyrus might indicate a functional coordination mechanism.
Keywords: Type 2 diabetes mellitus (T2DM); cognitive impairment; interhemispheric; magnetic resonance imaging (MRI); resting-state functional connectivity (RSFC).