Background: Circular RNAs (circRNAs) could participate in cis-dichlorodiammineplatinum (DDP) resistance of human cancers. However, circRNAs role in DDP resistance of oral squamous cell carcinoma (OSCC) progression remains largely undeveloped. Here, we attempted to explore the role of circ-SCMH1 (ID hsa_circ_0011946) in acquired DDP resistance.
Methods: Expression of circ-SCMH1, microRNA (miR)-338-3p and Lin-28 homolog B (LIN28B) was detected by real-time quantitative PCR and western blotting, and their interactions were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation and RNA pull-down assay. DDP resistance was assessed by MTT assay, colony formation assay, flow cytometry, transwell assays, western blotting, and xenograft experiment. Transmission electron microscopic analysis, nanoparticle tracking analysis and western blotting confirmed the characterizations of extracellular vesicles (EVs).
Results: Circ-SCMH1 was upregulated in DDP-resistant OSCC tissues and cells (SCC-15/DDP and CAL-27/DDP). Circ-SCMH1 knockdown suppressed the half-maximal inhibitory concentration of DDP, colony formation, and migration/invasion in SCC-15/DDP and CAL-27/DDP cells, but promoted apoptosis rate and apoptotic proteins (Bax and cleaved-caspase-3) expression. However, silencing miR-338-3p abrogated above effects, and overexpressing miR-338-3p mimicked that. Similarly, miR-338-3p overexpression role could be counteracted by restoring LIN28B. Moreover, interfering circ-SCMH1 retarded tumor growth of SCC-15/DDP cells in vivo with DDP treatment or not. Mechanistically, circ-SCMH1 directly sponged miR-338-3p in regulating LIN28B, a target gene for miR-338-3p. Notably, circ-SCMH1 was an EVs cargo, and DDP-resistant OSCC cells-derived EVs could provoke circ-SCMH1 upregulation in parental cells.
Conclusion: Circ-SCMH1 contributes to chemoresistance of DDP-resistant OSCC cells partially via EVs secretion and circ-SCMH1/miR-338-3p/LIN28B axis.
Keywords: Circ-SCMH1; DDP resistance; LIN28B; OSCC; miR-338-3p.
© 2021. The Author(s).