(1) Background: The aim of this retrospective study is to assess safety and efficacy of lung radiofrequency (RFA) and microwave ablation (MWA) using an augmented reality computed tomography (CT) navigation system (SIRIO) and to compare it with the standard CT-guided technique. (2) Methods: Lung RFA and MWA were performed with an augmented reality CT 3D navigation system (SIRIO) in 52 patients. A comparison was then performed with a group of 49 patients undergoing the standard CT-guided technique. All the procedures were divided into four groups based on the lesion diameter (>2 cm or ≤2 cm), and procedural time, the number of CT scans, radiation dose administered, and complications rate were evaluated. Technical success was defined as the presence of a "ground glass" area completely covering the target lesion at the immediate post-procedural CT. (3) Results: Full technical success was achieved in all treated malignant lesions for all the considered groups. SIRIO-guided lung thermo-ablations (LTA) displayed a significant decrease in the number of CT scans, procedure time, and patients' radiation exposure (p < 0.001). This also resulted in a dosage reduction in hypnotics and opioids administrated for sedation during LTA. No significant differences were observed between the SIRIO and non-SIRIO group in terms of complications incidence. (4) Conclusions: SIRIO is an efficient tool to perform CT-guided LTA, displaying a significant reduction (p < 0.001) in the number of required CT scans, procedure time, and patients' radiation exposure.
Keywords: lung ablation; microwave ablation; navigation system; radiation dose; radiofrequency.